Интерстеллар
Поле балка — это совокупность силовых линий, располагающихся в пятимерном балке. Что это за силовые линии, профессор не знает, но он строит догадки (см. ниже). На рис. 25.3 показано поле балка (фиолетовые пунктирные линии), проходящее через нашу брану. Это поле вызывает в нашей бране приливную гравитацию (красные и синие тендекс-линии). По мере того как меняется поле балка, меняется и приливная гравитация, что и служит (по мнению профессора) причиной большей части наблюдаемых аномалий.
Однако, подозревает (в Кип-версии) профессор, поля балка способны не только на это. Еще они могут управлять силой гравитации, порождаемой другими объектами нашей браны, будь то камень или планета.
Поля балка управляют силой гравитации
Гравитацией каждой частицы вещества в нашей бране управляет (с высокой точностью) ньютоновский закон обратных квадратов (см. главу 2 и главу 23). Гравитационное притяжение выражается формулой g = Gm/r2, где r — это расстояние от частицы вещества, m — масса этой частицы, а G — гравитационная постоянная, входящая в формулу всемирного тяготения.
Теория относительности Эйнштейна еще более точно описывает законы гравитации, и сила гравитации, а также сила всех искривлений пространства и времени, порожденных веществом, здесь тоже пропорциональна G.
Если балка нет и есть только наша четырехмерная Вселенная, законы Эйнштейна утверждают, что G — абсолютная постоянная, она одинакова в любой точке пространства и не меняется со временем.
Но если балк существует, законы теории относительности допускают изменение G. Возможно, рассуждает профессор, поля балка способны ее изменять. Вероятно, так и происходит, думает он. Это наилучшее объяснение одной из наблюдаемых в Кип-версии аномалий (рис. 25.4).
Рис. 25.4. Карты гравитационного притяжения Земли. Сверху: в 2014 году, по данным спутника GOCE. Снизу: после внезапного изменения в эпоху аномалий
Сила гравитационного притяжения Земли немного меняется от места к месту, поскольку отличающиеся друг от друга по плотности горные породы, залежи нефти, водные массивы и т. д. распределены по планете неравномерно. Различия в гравитации отображаются на карте с помощью орбитальных спутников. Самая точная на 2014 год карта составлена спутником GOCE77 Европейского космического агентства (рис. 25.4 сверху). По ней видно, что на 2014 год слабее всего земная гравитация на юге Индии (синее пятно), а сильнее всего — в Исландии и Индонезии (красные пятна).
В Кип-версии карта практически не менялась, пока не начали появляться аномалии. А затем весьма резко гравитационное притяжение Земли ослабело в Северной Америке и усилилось в Южной Африке (рис. 25.4 снизу).
Профессор Брэнд пытался объяснить это изменением приливных сил под влиянием полей балка, но испытывал затруднения. Лучшим объяснением, что он мог найти, было увеличение гравитационной постоянной G в недрах Земли под Южной Африкой и ее уменьшение в недрах под Северной Америкой. Видимо, эти изменения породило некое поле балка, проходящее через нашу брану и влияющее на G, решил профессор.
Поля балка — это не только ключ к гравитационным аномалиям на Земле, считает профессор Брэнд (в Кип-версии). Эти поля играют также две другие важные роли — они удерживают червоточину открытой и защищают нашу Вселенную от разрушения.
Как не дать червоточине схлопнуться
Если предоставить червоточину, которая соединяет Солнечную систему с окрестностями Гаргантюа, самой себе, она схлопнется (рис. 25.5). Наша связь с Гаргантюа будет прервана. Это однозначно следует из законов теории относительности Эйнштейна (см. главу 14).
Рис. 25.5. Червоточины. Сверху: схлопывающаяся. Снизу: удерживаемая в открытом состоянии полями балка
Если исключить балк, единственный способ удерживать червоточину открытой — это пронизать ее экзотической материей со свойством гравитационного отталкивания (см. главу 14). Темная энергия, которая (вероятно) убыстряет расширение Вселенной (см. главу 24), скорее всего, не обладает достаточным для наших целей гравитационным отталкиванием. Причем на 2014 год представляется вероятным, что законы квантовой физики не позволят даже чрезвычайно развитой цивилизации когда-либо собрать столько экзотической материи, чтобы удерживать червоточину открытой. И я подозреваю, что в эпоху профессора Брэнда ученые лишь еще больше утвердятся в этой мысли.
Но, понимает профессор (в Кип-экстраполяции), есть альтернатива: удерживать червоточину от схлопывания могут поля балка. А поскольку профессор считает, что червоточину создали и поместили возле Сатурна сущности из этого самого балка, ему эта версия кажется перспективной.
Как спасти Вселенную
Чтобы гравитация в нашей Вселенной с высокой точностью подчинялась ньютоновскому закону обратных квадратов, наша брана должна быть заключена между двух ограничительных бран с AdS-слоем между ними (см. главу 23). Однако ограничительные браны находятся под давлением78 и подвержены короблению, словно игральные карты, зажатые между пальцев (рис. 23.8). Согласно теории относительности, все будет именно так, а не иначе.
Если этому короблению ничего не препятствует, произойдет столкновение ограничительных бран с нашей браной — с нашей Вселенной (рис. 25.6)79. И Вселенная неизбежно погибнет!
Рис. 25.6. Столкновение бран
Очевидно, что наша Вселенная не разрушилась, отмечает профессор в Кип-экстраполяции. Значит, что-то должно предохранять ограничительные браны от коробления. Единственное, что, по мнению профессора, подходит для этого, — поля балка. Как только ограничительная брана начинает прогибаться, поля балка должны каким-то образом на нее воздействовать, возвращая ей прямизну.
И наконец, уравнение профессора!
Законы физики описываются языком математики. Еще до того, как Купер встретил профессора Брэнда (в Кип-версии), профессор пытался составить математическое описание полей балка и их проявлений — того, как они порождают аномалии, как изменяют гравитационную постоянную G в нашей Вселенной, как удерживают червоточину открытой и как защищают нашу брану от столкновений.
Составляя это описание, профессор руководствовался данными наблюдений, собранных его командой, и эйнштейновскими законами физики, расширенными на пятое измерение.
Профессор выразил все свои идеи в одном уравнении, «том самом» уравнении, которое он записал на одной из досок в своем кабинете (рис. 25.7)80. Купер видит это уравнение во время первого визита в NASA, и оно все там же десятки лет спустя — когда Мёрф выросла, стала выдающимся физиком и помощницей профессора.
Рис. 25.7. Уравнение профессора Брэнда
Для подобных уравнений применяют термин «действие». Есть хорошо известная (физикам) математическая процедура — взять действие и вывести все следующие из него неквантовые физические законы. Из уравнения профессора, в сущности, можно вывести абсолютно все неквантовые законы. Но чтобы это были верные законы — законы, безошибочно описывающие, как возникают аномалии, как червоточина остается открытой, как изменяется G и что защищает Вселенную, — уравнение должно иметь надлежащую математическую форму. Профессор не знает, чт? это за форма. Он пытается угадать. Он делает обоснованные предположения, но это тем не менее лишь предположения.