Теория относительности для миллионов
Точно так же, как имеются евклидовы геометрии пространств 2, 3, 4, 5, 6, 7…. измерений, существуют неевклидовы геометрии 2, 3, 4, 5, 6, 7…. измерений.
При разработке общей теории относительности Эйнштейн счел необходимым использовать четырехмерную риманову геометрию. Однако вместо четвертого пространственного измерения Эйнштейн выбрал в качестве четвертого измерения время. В понятии четвертого измерения нет ничего таинственного или мистического. Просто это означает, что каждое событие, которое имеет место во Вселенной, представляет собой событие, происходящее в четырехмерном мире пространства — времени.
Это можно уяснить себе, рассмотрев следующее событие. Вы садитесь в автомобиль в 2 часа дня и едете из своего дома в ресторан, расположенный в 3 км к югу и в 4 км к востоку от вашего дома. На двухмерной плоскости кратчайшее расстояние от вашего дома до ресторана есть гипотенуза прямоугольного треугольника со сторонами 3 и 4 км. Эта гипотенуза имеет длину 5 км.
Но вам требуется также затратить какое-то время, скажем 10 мин, на поездку. Этот промежуток времени может быть изображен на трехмерном графике. Одна координата на этом графике есть расстояние к югу в километрах, другая — расстояние к востоку в километрах, а координата по вертикали — время в минутах. На трехмерном графике пространства — времени «интервал» (пространственно-временной промежуток) между двумя событиями (вашим отъездом из дому и прибытием к ресторану) изображен в виде прямой.
Эта прямая линия не есть график реальной поездки. Просто она является мерой пространственновременного расстояния между двумя событиями.
График поездки может быть сложной кривой, поскольку ваша машина ускоряется в начале движения, расположение улиц может сделать невозможной поездку к ресторану по прямой, где-то в пути вы остановитесь при красном свете, и, наконец, вы должны испытать отрицательное ускорение, когда останавливаете машину. Сложный волнистый график реальной поездки в теории относительности называется «мировой линией» поездки. В рассмотренном случае это мировая линия в трехмерном пространстве — времени, или (как его иногда называют) в трехмерном пространстве Минковского.
Так как эта поездка на автомобиле происходила на плоскости, имеющей два измерения, оказалось возможным добавить еще одно измерение — временное и изобразить ее в виде трехмерного графика.
Когда события происходят в трехмерном пространстве, невозможно нарисовать график в четырехмерном пространстве — времени, но математики умеют обращаться с такими графиками, не рисуя их. Попытайтесь представить себе четырехмерного ученого, который умеет чертить четырехмерные графики с такой же легкостью, как обычный ученый чертит двух- и трехмерные графики. Три координаты его графика соответствуют трем измерениям нашего пространства. Четвертая координата — это наше время. Если космический корабль улетает с Земли и приземляется на Марсе, наш воображаемый ученый изобразит мировую линию этого путешествия в виде кривой на своем четырехмерном графике. (Линия будет кривой, так как корабль не может проделать такое путешествие без ускорений.) Пространственно-временной «интервал» между отлетом и приземлением будет изображаться на этом графике прямой линией.
В теории относительности всякий предмет представляет собой четырехмерную структуру, движущуюся вдоль мировой линии в четырехмерном мире пространства — времени. Если какой-либо предмет рассматривается покоящимся по отношению к трем пространственным координатам, он все равно движется во времени. Его мировая линия будет прямой, параллельной временной оси графика. Если предмет совершает равномерное движение в пространстве, его мировая линия по-прежнему будет прямой, но теперь уже непараллельной оси времени. Если предмет движется неравномерно, его мировая линия становится кривой.
Теперь мы можем рассмотреть Лоренц-Фитцджеральдово сокращение специальной теории с новой точки зрения: с точки зрения Минковского, иначе говоря, с точки зрения нашего четырехмерного ученого. Как мы видели, когда два космических корабля проходят один мимо другого, находясь в состоянии относительного движения, наблюдатели на каждом из кораблей обнаруживают некоторые изменения формы другого корабля, а также изменения скорости хода часов на другом корабле. Это происходит по той причине, что пространство и время не являются абсолютными величинами, не зависящими друг от друга. Они похожи, так сказать, на теневые проекции четырехмерных пространственно-временных предметов. Если поставить книгу против источника света и проектировать ее тень на двухмерную стенку, то, поворачивая книгу, можно изменять форму ее тени. В одном положении тень книги представляет собой широкий прямоугольник, в другом — узкий. Книга не меняет своей формы, меняются только ее двухмерные тени.
Подобным образом наблюдатель видит четырехмерную структуру, скажем, космический корабль, в различных трехмерных проекциях в зависимости от того, как он движется по отношению к кораблю. В некоторых случаях проекция занимает больше пространства и меньше времени, в других случаях наоборот. Изменения, которые он наблюдает в пространственных и временных измерениях другого корабля, могут быть объяснены своего рода «поворотом» корабля в пространстве — времени, приводящим к изменению его теневых проекций на пространство и время. Именно это имел в виду Минковский, когда (в 1908 г.) начал знаменитую лекцию на 80-м съезде германского общества натуралистов и физиков. Эта лекция опубликована в книге «Принцип относительности» Альберта Эйнштейна и др. Никакая из популярных книг по теории относительности не будет полной без следующей цитаты из лекции Минковского:
«Взгляды на пространство и время, которые я хочу изложить перед вами, развивались на основе экспериментальной физики, и в этом их сила. Они радикальны. Отныне пространство само по себе и время само по себе обратились в простые тени, и только какое-то единство их обоих сохранит независимую реальность».
Отсюда следует понять, что пространственно-временная структура, четырехмерная структура космического корабля, остается такой же твердой и неизменной, как в классической физике. В этом состоит существенное различие между отброшенной теорией сокращения Лоренца и теорией сокращения Эйнштейна. Для Лоренца сокращение представляло собой реальное сокращение трехмерного предмета. Для Эйнштейна «реальный» предмет — это четырехмерный предмет, который никак не меняется. Его трехмерная проекция на пространство и его одномерная проекция на время могут изменяться, но четырехмерный корабль в пространстве — времени остается неизменным.
Это другой пример того, как теория относительности вводит новые абсолюты. Четырехмерная форма твердого тела абсолютна и неизменна. Подобно этому, четырехмерный интервал между двумя событиями в пространстве—времени есть абсолютный интервал. Наблюдатели, движущиеся с большими скоростями в разных состояниях относительного движения, могут расходиться во мнении о том, насколько удаленными друг от друга в пространстве представляются им два события и как они разделены во времени, но все наблюдатели независимо от их движения, будут едины в том, насколько разделены эти два события в пространстве — времени.
В классической физике тело, если на него не действует сила, движется в пространстве вдоль прямой с постоянной скоростью. Например, планета двигалась бы по прямой, если бы ее не удерживала сила притяжения к Солнцу. Таким образом. Солнце заставляет планету двигаться по эллиптической орбите.