Простое начало. Как четыре закона физики формируют живой мир
Рассмотрим для примера РНК. В первой части книги мы говорили, что чтение генов обеспечивает фермент РНК-полимераза: она транскрибирует последовательность ДНК в последовательность РНК, которая затем может транслироваться в цепочку из аминокислот – белок. Не считая яйцеклеток, сперматозоидов и некоторых иммуноцитов, все клетки вашего организма имеют одинаковый геном, поэтому секвенировать ДНК каждой клетки было бы избыточным. Зато интересно было бы знать, какие молекулы РНК синтезируются в каждой клетке: так мы могли бы понять, какие гены включаются и выключаются, когда клетки в ходе развития становятся кровяными тельцами или нейронами либо когда реагируют на изменения в питании или на стресс. Для этого нам необходимо секвенировать молекулы РНК, четко зная, из какой клетки они получены. Вы уже, наверное, представляете характерные черты нашей методологии: мы используем физические силы и свойства, дополняя их биологическими инструментами, разработанными природой.
На этот раз вместо медуз и светлячков нашими помощниками станут вирусы. Центральная догма молекулярной биологии гласит, что ДНК кодирует РНК, которая кодирует белки. Когда в 1970-м исследовательские группы Дэвида Балтимора и Говарда Темина независимо друг от друга открыли способность некоторых вирусов обращать этот процесс вспять – транскрибировать свой РНК-геном в ДНК, которая еще и внедряется в геном клетки-хозяина, – эта новость многих потрясла. Вирусный белок, производящий, по сути, обратную транскрипцию, назвали соответственно – обратной транскриптазой (ревертазой)15. Теперь мы умеем использовать ее в своих целях, как обычную ДНК-полимеразу и другие подобные инструменты.
Выделив РНК из клетки, мы можем добавить к ней обратную транскриптазу и свободные нуклеотиды, чтобы синтезировать ДНК, комплементарные однонитевым РНК. Например, в случае РНК-последовательности ЦAГУУГГA мы получим ДНК-комплемент ГTЦAAЦЦT (как вы помните из главы 3, У в РНК заменяет T в ДНК). С помощью секвенирования мы узнаем точную нуклеотидную последовательность этой комплементарной ДНК (кДНК), а значит, и исходной РНК. Чтобы изучить полный набор РНК (транскрипто́м) отдельной клетки, ученые применяют методы вроде тех, что мы уже рассматривали: например, изолируют одиночные клетки с шариками и необходимыми ингредиентами в каплях водно-масляной эмульсии16. Каждая молекула РНК транскрибируется в ДНК, которая затем секвенируется – и вот мы уже знаем, какие гены были «включены» в той или иной клетке.
Хотя секвенирование транскриптома одиночных клеток и предполагает их разрушение, они служат типичными представителями той или иной клеточной популяции, траекторию развития которой можно проследить, отбирая из нее такие вот жертвенные единицы на разных этапах какого-то процесса либо после специфического воздействия. Так ученые исследовали, например, ответные изменения экспрессии генов у иммуноцитов организмов, вступивших либо не вступивших в контакт с интересующим патогенным стимулом. Или вот другой пример: по РНК, выделяемой из эмбрионов данио-рерио и мышей на разных этапах после зачатия, можно отслеживать динамику профилей экспрессии генов, направляющую клетку по тому или иному пути специализации.
Секвенирование РНК – одна из множества технологий, опирающихся на секвенирование ДНК [57]. Сегодня ученые уже умеют определять, какие сегменты ДНК намотаны на гистоны, к каким нуклеотидам прикреплены метильные группы, какие участки генома покрыты факторами транскрипции и многое другое. В заголовке мы спросили: «Когда секвенатор ДНК не соответствует своему названию?» И каков же ответ? Когда он секвенирует РНК, или когда картирует элементы упаковки ДНК, или когда исследует регуляцию работы генов, да вообще много когда.
Живые существа постоянно обрабатывают информацию, закодированную в ДНК: они копируют ее при делении клеток и рутинно считывают, транскрибируя и транслируя гены в РНК и белки. Результаты этих процессов зависят от последовательности нуклеотидов A, Ц, Г и T, то есть сами процессы в каком-то смысле сводятся к чтению молекул ДНК. Примерно 4 миллиарда лет других методов чтения ДНК не существовало. Теперь мы изобрели радикально новые инструменты – быстрые, дешевые, едва ли не сказочно эффективные, – и они открывают нам доступ к информации, зашифрованной в каждом организме. Эта поразительная технологическая трансформация случилась потому, что мы серьезно подошли к осязаемым физическим характеристикам биомолекул и наладили их взаимодействие с другими аспектами наших технологий. Ну а мы теперь посмотрим, что можно узнать из информации, зашифрованной в ДНК.
Глава 14. Генетические комбинации
Информация, зашифрованная во всевозможных организмах, включая людей, теперь у нас на ладони благодаря освоению чудесного искусства чтения ДНК. Что же мы можем из нее извлечь? Мы уже задавали этот вопрос в первой части книги, когда рассматривали природу генов и регуляцию их работы. Нам хочется думать, что наше генетическое содержимое отражается в характеристиках организма напрямую: ведь так удобно просто сопоставлять, каким генным вариациям соответствуют вариации в интересующей характеристике. Но даже из первой части понятно, что на самом деле все не так просто: биологическая активность определяется не только генами, но и зашифрованной в геноме регуляторной схемой, которая включает и выключает их транскрипцию. Дальше мы увидим, что природа еще сложнее, чем мы могли подумать: на многие значимые для нас признаки и заболевания влияют тысячи разных областей генома, сплетая плотную паутину связей, распутать которую очень сложно.
И здесь на помощь приходит все та же предсказуемая случайность: она дает нам теоретические и практические инструменты для работы с генетической информацией. Эти инструменты настолько эффективны, что мы часто можем обходиться без секвенирования полных геномов и пользоваться куда менее подробными, зато недорогими генетическими картами. Знания о случайности и предсказуемости критически важны для осмысления технологий, которые уже сейчас существенно влияют на наш мир, вторгаясь в медицинскую, промышленную и этическую повестки, о чем мы тоже поговорим.
Где искать ген высокого роста?В зонтичную категорию «генетических» попадает множество характеристик, которые если не полностью, то хотя бы частично зависят от нуклеотидной последовательности, унаследованной нами от родителей. Иногда, в том числе и в случае нескольких тяжелых заболеваний, очень просто найти связь между тем, что происходит в организме, и тем, какой участок ДНК за это отвечает. Так бывает, когда проблема заключается всего в одном гене. Хороший пример тому – муковисцидоз.
У всех нас в легких выделяется секрет, из которого состоит жидкая пленка, описанная в главе 11. После секреции эпителиальные клетки выталкивают его по дыхательным путям вверх, ко рту, избавляясь так от лишней жидкости, грязи, пыльцы, бактерий и прочих частиц, которые мы то и дело вдыхаем. У людей, страдающих муковисцидозом, секрет слишком вязкий и потому застаивается в легких, повышая их восприимчивость к бактериальным инфекциям. Виноват в этом один-единственный ген, CFTR, кодирующий один белок – регулятор трансмембранной проводимости, связанный с муковисцидозом. Этот канальный белок, пронизывая клеточные мембраны, проводит через них ионы хлора и бикарбоната [58]. У больных муковисцидозом мутация в гене CFTR изменяет структуру этого регулятора. В итоге концентрации ионов по обе стороны мембраны оказываются не такими, какими должны быть, что заставляет воду уходить из секрета, его вязкость повышается, и у больного появляются характерные симптомы.
Если сравнивать с муковисцидозом, на другом конце шкалы генетической предопределенности расположились признаки вроде роста. На рост влияют и негенетические факторы – больше всего питание, – но генетический материал, полученный вами в момент зачатия, сильнее определяет конечные показатели, каких вы можете достичь. Гена роста, впрочем, не существует. В геноме человека есть десятки тысяч изменчивых позиций, где тот или иной тип нуклеотида в какой-то мере влияет на рост. Они находятся не только в генах, но и в последовательностях, которые, образно говоря, дергают гены за ниточки – регулируют их экспрессию или упаковку ДНК (см. главу 3).